Sustainable drainage systems (SuDS) and sponge cites

IRIDRA Drenaggio urbano sostenibile

Sustainable drainage systems (SuDS) want to manage urban runoff in order to: (i) restore hydrological balance and reduce pollutant loads of water bodies, moving from a post-urbanization back towards a pre-urbanization status of water bodies; (ii) build the so-called Sponge Cities, i.e. cities able to soak the urban runoff and mitigate flood effects; (iii) build green-blue infrastructure able to exploit all the Ecosystem Services of Nature-Based Solutions.

IRIDRA proposes SuDS solutions for sustainable management of rainwater, trying to conjugate the environmental needs with the possibility to restore neglected urban areas.

The drainage of urban runoff was usually underestimated in the planning and design of current cities. It resulted in serious hydraulic risks once the cities increased too much the cover with impervious surfaces, leading to often urban flood events due to functioning in pressure of sewers. But the current approach leads also to many issues in terms of water quality, due to pollutant load conveyed to water bodies by first flushes and combined sewer overflows.

 

suds 1  webSource: Woods Ballard et al. 2015. "The SuDS Manual"

 

Sustainable drainage systems - the concept

Sustainable Drainage Systems (SuDS) want to manage urban runoff to:

  • recover the original hydrologic regime and reduce the pollutant loads, moving from post-development back again to pre-development status;
  • build future sponge cities in response to heavy rains;
  • provide cities with as much as possible new green-blue infrastructures, exploiting the multiple ecosystem services of nature-based solutions

suds 2

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

SuDS and Ecosystem services

Ecosystem services are defined as the "direct or indirect contribution of an ecosystem to human wellbeing".

SuDS techniques provide a number of different ecosystem services additional to that of runoff drainage. For instance, 17 examples of ecosystem services given by SuDS - Soft Engineering - instead of conventional solutions - Hard Engineering - are reported (Huber, 2010):

  • atmospheric regulation
  • climate regulation
  • disturbance regulation
  • water regulation
  • water supply
  • erosion control and sediment retention
  • soil formation
  • nutrient cycling
  • waste treatment
  • pollination
  • species control
  • refugia/habitat
  • food production
  • genetic resources
  • recreation
  • cultural enrichment

hardsoft  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

SuDS and Green-Blue Infrastructures

Green-Blue Infrastructure is defined as a network of green and blue spaces exploiting ecosystem services to provide benefit for people and the environment.

green infr  web

Urban park following a SuDS approach in Singapore (Bishan). Source: Gibelli G., 2015, Manuale di drenaggio urbano (in Italian)

SuDS and Sponge Cities

Sponge city is a concept developed in China, in which the city is required to adsorb urban runoff as "sponges" in order to reduce the flood risks driven by increased urbanization. In this clear how a SuDS approach is suitable to develop Sponge cities.

sponge cities  web

 

SuDS, WSUD, LID, BMPs ...

The SuDS approach is known in literature with different keywords, developed by research groups of different states. The most known ones are the following:

  • SuDS Sustainable Drainage Systems
  • WSUD Water Sensitive Urban Design
  • LID Low Impact Development
  • BMP Best Management Practices

 

suds lid wsud

 

SuDS experiences - International

suds intern 1

Atelier Dreiseitl, Potdamer Plaza, Berlino (Germania)

suds intern 2

Tanner Springs Park, Portland (USA)

suds intern 3

Water Plaza, Rotterdam (Olanda). Fonte: Gibelli G., 2015, Manuale di drenaggio urbano

suds intern 4

Sydney (Australia). Fonte: Gibelli G., 2015, Manuale di drenaggio urbano

References

 

IRIDRA's authors are highlighted in bold.

Masi F.Rizzo A.Bresciani R., Sustainable Rainwater Management in the City: Opportunities and Solutions for the Anthropic Environmental Impacts Reduction and Urban Resilience Increase, in "Smart Metropolia - Przestrzenie RelacjiPublisher: Obszar Metropolitalny Gdansk-Gdynia-Sopot ul. Dlugi Targ 39/40, 80-830 Gdansk, 109-119; 978-83-65496-02-07, 2018.

Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas. Fay-etteville, AR: University of Arkansas Community Design Center.

Woods Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Scott, T., Ashley, R. and Kellagher, R., 2015. The SuDS Manual, C753, CIRIA, London, UK. ISBN 978-0-86017-760-9.

 

SuDS and sponge cities implementation scales

IRIDRA Scale di applicazione SuDS

The different sustainable drainage systems (SuDS) allow to propose a SuDS and sponge city approaches at different implementation scales, which can be subdivided as follow:

  • building
  • property lots
  • street and parking
  • open spaces
  • Retrofitting of existing green areas
     

IRIDRA proposes the SuDS and sponge cities approach for all the scales, from single houses to public open spaces, up to big peri-urban areas.

Single house scale

house  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

Lot scale

properties 1  webSource: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

properties 2  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

properties 3  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

Parking

parking 1  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

parking 2  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

parking 3  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

 

 

Roads

roads 1  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areass

roads 2  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

roads 3  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

Urban planning and public spaces

 open space 1  web  open space 2  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

open space 3  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

greenway  web

Source: Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas

 

 

Retrofitting of existing green areas

retrofitting  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

References

IRIDRA's authors are highlighted in bold.

Masi F.Rizzo A.Bresciani R., Sustainable Rainwater Management in the City: Opportunities and Solutions for the Anthropic Environmental Impacts Reduction and Urban Resilience Increase, in "Smart Metropolia - Przestrzenie RelacjiPublisher: Obszar Metropolitalny Gdansk-Gdynia-Sopot ul. Dlugi Targ 39/40, 80-830 Gdansk, 109-119; 978-83-65496-02-07, 2018.

Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas. Fay-etteville, AR: University of Arkansas Community Design Center.

Woods Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Scott, T., Ashley, R. and Kellagher, R., 2015. The SuDS Manual, C753, CIRIA, London, UK. ISBN 978-0-86017-760-9.

Techniques of Sustainable drainage systems (SuDS)

IRIDRA Tecniche SuDS

Techniques of Sustainable drainage systems (SuDS) are various and allow reaching different multidisciplinary goals: flood protection, water quality improvement, urban restoration or biodiversity increase. In function of which goal wants to be maximized, it is possible to use simple trench filters, going through vegetated swales, up to bioretention systems, ponds, and wetlands.

IRIDRA has all the multidisciplinary expertise to propose different SuDS techniques, in function of different required goals.

Rain water harvesting

 rainwater harvesting 1  web

 rainwater harvesting 2  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Green roofs

green roof  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Infiltration basins

infiltration basins  web

Fonte: Woods Ballard et al. 2015. "The SuDS Manual"

 

Swales

swales  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Bioretention systems

bioretention systems  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Infiltration trees

trees 1  web

trees 2  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Detention basins

detention basins  web

Source: Woods Ballard et al. 2015. "The SuDS Manual"

 

Ponds

ponds 2  web

Source: Gibelli G., 2015, Manuale di drenaggio urbano

 

Wetlands

wetlands 1  web

Source: Gibelli G., 2015, Manuale di drenaggio urbano

wetlands 2  web

Courtesy: Jaime Nivala

 

References

IRIDRA's staff is highlighted in bold.

Masi F.Rizzo A.Bresciani R., Sustainable Rainwater Management in the City: Opportunities and Solutions for the Anthropic Environmental Impacts Reduction and Urban Resilience Increase, in "Smart Metropolia - Przestrzenie RelacjiPublisher: Obszar Metropolitalny Gdansk-Gdynia-Sopot ul. Dlugi Targ 39/40, 80-830 Gdansk, 109-119; 978-83-65496-02-07, 2018.

Huber, J., 2010. Low Impact Development: a Design Manual for Urban Areas. Fay-etteville, AR: University of Arkansas Community Design Center.

Woods Ballard, B., Wilson, S., Udale-Clarke, H., Illman, S., Scott, T., Ashley, R. and Kellagher, R., 2015. The SuDS Manual, C753, CIRIA, London, UK. ISBN 978-0-86017-760-9.

IRIDRA's projects

IRIDRA's projects

Retrofitting SuDS Matteotti boulevard, Bovisio Masciago (MB - Italy)

Chosen SuDS solution: Bioretention systems, urban detention basins

Peculiarity: Within the framework of urban desealing interventions with SuDS, it was taken the chance to design multipurpose elements able to also provide urban restoration.

Year of design: Preliminary design, 2021; Detailed design 2022; Completed

The project followed the principle of multidisciplinary sustainable drainage system (SuDS) design, promoting a SuDS retrofitting intervention capable of providing benefits in terms water quantity, water quality, biodiversity and amenity, and creating a long linear green infrastructures in the urban area. The intervention consists in decreasing the width of the existing road to recover space of including about 1000 m2 of the bioretention systems and a cycle lane. In terms of Water quantity, the SuDS have been designed to retain low intensity rain events, permitting to avoid discharging in combined sewer, on average, 10000 m3/y, draining an impervious surface of about 12000 m2. In terms of Water quality, the porous media of the bioretention systems have been selected to provide an effective treatment of the pullutants in the  stormwater first flush generated by the deposits of pollutant on the roads during dry periods, guaranteeing and effective removal of solids and metals. Regarding Biodiversity, about 1000 m2 of paved surface have been greened back and planted with 14 different shrubs and 7 different trees, contributing also to other benefits typical of urban greening, such as heat island reduction, air pollution control, and noise attenuation. Moreover, the urban greening permitted to achieve also the Amenity benefits; being designed according the SuDS principle, the multipurpose SuDS elements drain in 24-48 hours, permitting to live the area in dry period. To this aim, also a small abandoned square have been recovered, including multipurpose SuDS element together with typical restoration intervention, such as educative games for kids and urban forestation elements.

 

IRIDRA's projects

Retrofitting SuDS area Mercato presso via Paganini, Bovisio Masciago (MB)

Chosen SuDS solution: Bioretention systems with trees, urban detention basins

Peculiarity: Within the framework of urban desealing interventions with SuDS, it was taken the chance to design multipurpose elements able to also provide urban restoration of the market area, currently fully impermeable and without green spaces .

Year of design: Preliminary design, 2021; Detailed design 2021; Completed


IRIDRA's projects

Kerakoll research centre, Sassuolo (MO - Italy)

Chosen SuDS solution: Open-water tanks

Peculiarity: Rainwater harvesting and landscaping

Year of realization: 2012


IRIDRA's projects

Kerakoll research centre, Sassuolo (MO - Italy)

Chosen SuDS solution: Bioretention system

Peculiarity: Nature-based solution sited in the proximity of a building of high aesthetic value

Year of realization: 2012


IRIDRA's projects

The Eco-Boulevard and the Water Arena for the Lazzaretto quartier, Bologna (BO - Italy)

Chosen SuDS solution: Swales, bioretention systems, urban detention basin

Peculiarity: IRIDRA's proposal for the Climate Change Adaptation of the Bologna Municipality, included in the technical assistance given to Atkins in the study "Climate Change Adaptation and Resilient Cities" (financed by the European Investment Bank -EIB). These proposal were included in the new guidelines of Bologna Municipality for SuDS systems, one of the action of the Bologna Climate Change Adaptation Plan developed under the BlueAP LIFE project

Year of the study: 2017


IRIDRA's projects

Sustainable drainage systems in Sesto Ulteriano (Metropolitan City of Milan - Italy)

Chosen SuDS solution: Bioretention systems, urban detention basins

Peculiarity: IRIDRA SRL design proposals in the feasibility study jointed with Majone and Partners Engineering Studio Gioia Gibelli, and Studio Idrotecnico for SuDS retrofitting of an industrial and urban catchment in Sesto Ulteriano, including retrofitting intervents along roads, parking lots and industrial sites. A study financed by PoliS Lombardia.

Year of the study: 2018


IRIDRA's projects

Retrofitting SuDS of BEN-ESSERE quartier, Bresso (Metropolitan City of Milan - Italy )

Chosen SuDS solution: Bioretention systems, wet swales, dry detention basins in urban park area

Peculiarity: Within the framework of urban desealing interventions with SuDS, it was taken the chance to design multipurpose elements able to also provide urban restoration of the BEN-ESSERE (wellness) quartier of Bresso. The design followed a "Water Sensitive" approach, infiltrating road runoff, and conveying road runoff overflow and roof runoff by a swale towards a detention basin within the urban park "Parco Nord", where volume control strategy according to local legislation (Reg. RL 07/2017) is provided.

Year of design: Preliminary design, 2021


IRIDRA's projects

Nature-based solutions for urban flood mitigation in the San Paolo quartier, Prato (PO - Italy)

Chosen SuDS solution: Bioretention systems, dry detention basins , constructed wetlands for CSO

Peculiarity: Feasibility study for the study of potential NBS to reduce pluvial flooding of San Paolo quartier. Both "before-pipe" and "end-of-pipe" NBS solutions have been investigated, proposing different implementation scenario coupled with typological examples of the proposed NBS

Year of the study: 2021


IRIDRA's projects

Villese-Gorizie highway, Veneto Region (Italy)

Chosen  SuDS solution: Off-line treatment: First flush tank + HF + FWS + Detention and infiltration basin
On-line: HF/VF

Peculiarity: Multipurpose nature-based solution: environmental impact mitigation, landscaping improvement of highway. Designed by IRIDRA for Autovie Venete

Year of realization: 2015


IRIDRA's projects

Combined sewer overflow of Gorla Maggiore (VA - Italy): The "Water Park"

Yearly treated volumes of first flush: 150.000 m3/year

Chosen  SuDS solution: VF + FWS

Peculiarity: Multipurpose nature-based solution integrating different ecosystem services within the new "Water Park" of Gorla Maggiore: water quality improvement of Olona river, flood mitigation, recreational site, and biodiversity increase. Case study of EU  funded project OpenNESS.

Year of realization: 2012


IRIDRA's projects

Park of Santa Domenica Valley in Ragusa (RG - Italy)

Chosen  SuDS solution: Circular aerated wetland

Peculiarity: Nature-based solution included in the intervention of the urban restoration of the urban park of Santa Domenica Valley, in the Ragusa historical centre

Year of realization: 2018


IRIDRA's projects

Santa Chiara Open Lab in Trento (TN - Italy)

Chosen  SuDS solution: Urban wetland

Peculiarity: Nature-based solution included in the intervention for the Santa Chiara Open Lab project, financed by Italian fund for suburbs restoration ("Bando Periferie"). The wetland receives the runoff from roofs and is designed as a multipurpuse intervention: treatment and reuse (gardening) of rainwater; flood mitigation; biodiversity increase in urban environment; aesthetic.

Year of design: 2018


IRIDRA's projects

Kerakoll research centre, Sassuolo (MO - Italy)

Chosen  SuDS solution: Rain garden

Peculiarity: Nature-based solution sited in proximity of a building of high aestethic value

Year of realization: 2012


IRIDRA's projects

Residential area in Preganziol (TV - Italy)

Chosen  SuDS solution: Rain Garden

Year of realization : 2009


IRIDRA's projects

Restoration of Roggia Borromeo in Sant'Isidoro, Carugo (CO - Italy)

Chosen SuDS solution: Dry swale, Dry detention basin

Peculiarity: Multipurpose nature-based solution integrating different ecosystem services: water quality improvement, flood mitigation, recreational site, and biodiversity increase.

Year of design: 2016


IRIDRA gestione ecosostenibile delle risorse idriche
Copyright

All the material of the website , in particular text and images (excluding those that explicitely indicate a differen source) is of exclusive proprierty of the authors, ex Art. 2375 and ss. of Italian legislation, and it was realized for Iridra S.r.l.
Every act of copy, reproduction, steal or modification of the material, without explicit autorization, is punishable on the basis of the legislation regulating the copyright. However, according with the art. 70 l. 633/41 is allowed the citation of part of the website provided that they are used for criticism or discussion, training or research, with the aim of dissemination and with not commercial aims and citing the source with the inclusion of the link to the website; the use in not allowed to economically compete.

© 2018-2024 IRIDRA Srl

Sede legale e operativa: Via La Marmora, 51 - 50121 Firenze
P.IVA e C.F. IT04932610480
CCIAA Firenze num. 13926 - REA 502549 FI
Capitale Sociale (i.v.): 10.329,15 euro